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Abstract—Recently, a procedure named N-Scheme has been
introduced which enables the solution of finite element problems
without explicitly assembling the system matrix when a stationary
iterative solver is used. In this article, the matrix-free N-Scheme
technique is generalised to the solution of finite element problems
with non-stationary iterative solvers, which, compared to a
stationary solver, enable a significant reduction of the required
computation time.

I. I NTRODUCTION

The finite element procedure leads to a system of linear
equations which is commonly denoted byA·x = b, whereA
represents the system matrix,b the source vector, andx
the coefficient vector to be determined. Recently, a technique
called N-Scheme has been introduced, which enables the solu-
tion of finite element problems without the explicit assembly
of the system matrix [1]–[3]. This scheme is applicable in
a stationary solver, such as Gauss-Seidel or the Successive
Over-Relaxation (SOR) method, and rests on the construction
of an array which provides the connectivity of a node to
the elements that are associated with this particular node.
The method delivers reliable results but requires noticeable
more computation time in comparison to conventional finite
element implementations. The required CPU time can be
reduced by precomputing the element matrices [1], but this
would then require more memory than actually assembling the
system matrix which consequently is not a favourable solution.
A significant improvement without increasing the memory
requirement has been achieved by modifying the N-Scheme
technique for the employment in a non-stationary iterative
solver, the description of which represents the aim of this
paper.

II. N-SCHEME APPLIED IN NON-STATIONARY SOLVERS

A slight modification of the N-Scheme enables its applica-
tion in non-stationary solvers such as the Conjugate Gradient
method (CG), the BiConjugate Gradient method (BiCG) and
the stabilized version (BiCGstab), the Quasi-Minimal Resid-
ual method (QMR), or the Generalized Minimal Residual
method (GMRES). Detailed algorithmic descriptions of these
solvers are provided in [4]–[6]. In all the Krylov subspace
methods mentioned, the system matrix isA is only referenced
in the context of a matrix-vector product of the form

q(k) = A · p(k) (1)

or of its transposed variant, wherep represents a known vector
whose product withA at iterationk is assigned to a vectorq.

These vectors are of sizen and are commonly referred to as
search and update vectors, wheren denotes the number of
degrees of freedom in the system. The N-Scheme enables the
matrix-free evaluation of (1) by performing the product on an
element-by-element basis. This is achieved by first computing
the local element matrix of a particular element, by then
evaluating the product of this matrix with the relevant entries
of p, and by subsequently adding the result of this product to
the relevant entries ofq. The computation of (1) is complete
when all elements have been considered. This approach essen-
tially requires more CPU time compared to the conventional
assembling strategy, but it circumvents the explicit formation
of A and, as a result of that, requires virtually no memory.
An efficient implementation for the computation of the local
element matrices is, of course, indispensable. The convergence
behaviour of a Krylov subspace solver can be improved by
employing an appropriate preconditioner, but the application
of a preconditioner without violating the basic principle of
a matrix-free computation, i.e. without explicitly computing
and storing a preconditioner matrix, represents an intricate
task. Good results have been achieved by employing a Jacobi
preconditioner which is determined by the elements of the
main diagonal of the system matrix. Thesen elements can be
computed rapidly when needed or, as their storage would only
require the same amount of memory as the search and update
vectors, their assignment to an auxiliary vector can maybe be
considered as admissible.

III. E XAMPLES AND INITIAL RESULTS

In order to validate the matrix-free procedure and to provide
some initial timing results, a two-dimensional electrostatic
problem and a three-dimensional magnetostatic problem are
considered. The geometry of a shielded microstrip line with
a substrate of permittivityε is displayed in Fig. 1, where the
actual problem domain has been halvened by exploiting the
symmetry of the structure. The computation of the electric
scalar potentialφe(~r ) requires the solution of the Laplace
equation

∇
2φe(~r ) = 0 , (2)

subject to the boundary conditions indicated in the figure,
whereφe0 denotes the potential prescribed on the stripline.
The domain is discretized with triangular elements. Table I
shows number of elementsnel, the number of degrees of
freedomn, the number of iterationsnit and the CPU time
in seconds required to solve the resulting system of linear
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Fig. 1. Shielded microstrip line

equations with a tolerance of10−5 by employing the non-
preconditioned CG method with and without conventionally
assembled system matrix, as well as the matrix-free SOR
method. A relaxation factor of1.95 has proven to be a good
choice for the SOR method, but the CPU times reflect that
the procedure is not as efficient as the CG algorithm. For

TABLE I
CPU TIME , NON-PRECONDITIONEDCG AND SORMETHOD

convent. matrix-free

CG CG SOR

nel n nit t/s nit t/s nit t/s

6055 2877 124 0.05 124 0.29 208 1.03

13947 6748 179 0.18 179 0.98 203 2.43

57053 28075 360 2.87 358 8.58 203 12.85

231039 114616 669 24.92 666 74.36 792 241.88

the highly refined discretization in this example, the matrix-
free CG solution requires about three times as long as the
conventional procedure, but virtually without needing memory.
This can potentially be an advantage for the simulation of large
practical problems. The convergence behaviour of a Krylov
subspace solver can be significantly improved by employing
an appropriate preconditioner, but this is not an easy task
in a matrix-free environment, as mentioned in section II.
Table II displays the CPU time the CG, the BiCGstab, and
the QMR method require to solve the microstrip problem to
the same accuracy as before, but with the application of a
Jacobi preconditioner. The number of iterations required by

TABLE II
CPU TIME , MATRIX -FREEJACOBI-PRECONDITIONED METHOD

CG BiCGstab QMR

n nit t/s nit t/s nit t/s

2877 89 0.22 57 0.28 81 0.42

6748 134 0.75 81 0.94 117 1.47

28075 257 6.52 150 7.82 207 11.63

114616 487 55.67 283 68.09 363 104.70

the Jacobi-preconditioned CG solver reduces to about 70 %
of the non-preconditioned version, whereas the BiCGstab and
QMR procedure primarily confirm the applicability of the
N-Scheme technique to more advance solvers which enable the
solution of non-symmetric systems. The CPU times displayed

are of course machine and implementation dependent, but their
relation to the conventional CG solution shown in Table I
provides a good first indication of the performance of the
matrix-free algorithms. The second problem considered is a
magnetic circuit consisting of a coil and an iron core, as shown
in figure 2. The magnetic field in the circuit is modelled using

Fig. 2. Magnetic circuit with coil and iron core

the Source-Field technique [7], [8], for which

∇ ·
[

µ(~r )
(

~Hs(~r )−∇φm(~r )
)]

= 0 (3)

is solved, where~Hs(~r ) denotes the field generated by a source
current density andφm(~r ) the magnetic scalar potential.
The domain is discretized with tetrahedral elements and the
computations confirm the basic CPU time relations between
the matrix-free CG solver and matrix-free SOR method of the
first problem considered.

IV. D ISCUSSION ANDOUTLOOK

The N-Scheme technique introduced in [1]–[3] has been
modified and applied in non-stationary iterative solvers. Tim-
ing results of an electrostatic test problem have provided a
good first indication of the performance of the matrix-free
algorithms. The parallelisation of the matrix-free solvers as
well as the computation of non-linear problems are currently
under investigation and will be reported in due course.
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