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Abstract—Recently, a procedure named N-Scheme has beenThese vectors are of size and are commonly referred to as
introduced which enables the solution of finite element problems search and update vectors, wheredenotes the number of
without explicitly assembling the system matrix when a stationary degrees of freedom in the system. The N-Scheme enables the
iterative solver is used. In this article, the matrix-free N-Scheme trix-f luati f(1) b .f inal th duct
technique is generalised to the solution of finite element problems matrix-iree evaluation o _( ) y per ormlng € pro ucton 6_‘
with non-stationary iterative solvers, which, compared to a €lement-by-element basis. This is achieved by first computi
stationary solver, enable a significant reduction of the required the local element matrix of a particular element, by then
computation time. evaluating the product of this matrix with the relevant Esr
of p, and by subsequently adding the result of this product to
the relevant entries af. The computation of (1) is complete
The fini | q lead £ when all elements have been considered. This approach-essen

€ Tinite element procedure leads to a system o 'nefi'élly requires more CPU time compared to the conventional

equations WT]'Ch IS commonly];jerr]]oted Byx =b, whereﬁ assembling strategy, but it circumvents the explicit faiora
represents the system matrik, the source vector, an of A and, as a result of that, requires virtually no memory.

the coefficient vector to be determined. Recently, a tedm'qﬁrn efficient implementation for the computation of the local

called N-Scheme has been introduced, which enables the S ment matrices is. of course indispensable. The coaresy
tion of finite element problems without the explicit asseynb_lbehaviour of a Krylov subspace solver can be improved by

of the_ system matrix [1]-[3]. This sche_me is applicable 'Bmploying an appropriate preconditioner, but the appbeat
a stationary solver, such as Gauss-Seidel or the Succesgyg preconditioner without violating the basic principlé o

Over—ReIaxation_ (SOR) method, and rests- on the constructig matrix-free computation, i.e. without explicitly comng
of an array which provides the connectivity of a node t nd storing a preconditioner matrix, represents an irtxica

the elements th,‘"‘t are a}ssociated with this particular NO{&sk. Good results have been achieved by employing a Jacobi

The method delivers reliable results but requires notieeal reconditioner which is determined by the elements of the

more computation time in comparison to conventional fini ain diagonal of the system matrix. Theselements can be

element |mplementat|o_ns. The required CPU time can %mputed rapidly when needed or, as their storage would only

reduced by precomputing the element matrices [1], but t%@quire the same amount of memory as the search and update
t

would then require more memory than actually assembling &ctors, their assignment to an auxiliary vector can maybe b
system matrix which consequently is not a favourable sefuti . <ijered as admissible

A significant improvement without increasing the memory

requirement has been achieved by modifying the N-Scheme

technique for the employment in a non-stationary iterative [1l. EXAMPLES AND INITIAL RESULTS
solver, the description of which represents the aim of this
paper.

I. INTRODUCTION

In order to validate the matrix-free procedure and to previd
some initial timing results, a two-dimensional electrtista
problem and a three-dimensional magnetostatic problem are
Il. N-SCHEME APPLIED IN NON-STATIONARY SOLVERS considered. The geometry of a shielded microstrip line with
A slight modification of the N-Scheme enables its applicar substrate of permittivity is displayed in Fig. 1, where the
tion in non-stationary solvers such as the Conjugate Gnadiectual problem domain has been halvened by exploiting the
method (CG), the BiConjugate Gradient method (BiCG) angymmetry of the structure. The computation of the electric
the stabilized version (BiCGstab), the Quasi-Minimal Besi scalar potentiakp, () requires the solution of the Laplace
ual method (QMR), or the Generalized Minimal Residuaquation
method (GMRES). Detailed algorithmic descriptions of thes V26 (F) = 0, @)
solvers are provided in [4]-[6]. In all the Krylov subspace ©
methods mentioned, the system matrixaids only referenced subject to the boundary conditions indicated in the figure,
in the context of a matrix-vector product of the form where ¢,, denotes the potential prescribed on the stripline.
q® = A p® ) The domain is discretized with triangular elements. Table |
shows number of elements.;, the number of degrees of
or of its transposed variant, wheperepresents a known vectorfreedomn, the number of iterations,;;, and the CPU time
whose product withA at iterationk is assigned to a vecter. in seconds required to solve the resulting system of linear



¢, =0 are of course machine and implementation dependent, but the
| €0 relation to the conventional CG solution shown in Table |

: provides a good first indication of the performance of the

| matrix-free algorithms. The second problem considered is a
: magnetic circuit consisting of a coil and an iron core, assho

| ¢ =0 in figure 2. The magnetic field in the circuit is modelled using
|
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Fig. 1. Shielded microstrip line
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equations with a tolerance df0—> by employing the non-
preconditioned CG method with and without conventionally
assembled system matrix, as well as the matrix-free SOR S ) )
method. A relaxation factor of.95 has proven to be a good™9- 2 Magnetic circuit with coil and iron core
choice for the SOR method, but the CPU times reflect that
the procedure is not as efficient as the CG algorithm. Ftte Source-Field technique [7], [8], for which

TABLE | V- [H(F) (Hs(F) - V(bm(F))] =0 3

CPUTIME, NON-PRECONDITIONEDCG AND SORMETHOD

is solved, wherdi,(7) denotes the field generated by a source

convent. matrix-free current density andp,,(7) the magnetic scalar potential.
CG CG SOR The domain is discretized with tetrahedral elements and the
el n nig  t/s  nie  t/s  mi t/s computations confirm the basic CPU time relations between
6055  2877| 124 0.05 124 029 208  1.03 the matrix-free CG solver and matrix-free SOR method of the
13947 6748 179 0.18 179 0.98 203 243 first problem considered.
57053 28075 360 2.87 358 858 203 12.85
231039 114616 669 24.92 666 74.36 792 241.88 IV. DISCUSSION ANDOUTLOOK

The N-Scheme technique introduced in [1]-[3] has been
the highly refined discretization in this example, the matri modified and applied in non-stationary iterative solversn-T
free CG solution requires about three times as long as th@ results of an electrostatic test problem have provided a
conventional procedure, but virtually without needing noeyn  900d first indication of the performance of the matrix-free
This can potentially be an advantage for the simulationrgfela &!90rithms. The parallelisation of the matrix-free sotvers
practical problems. The convergence behaviour of a Kryld¥ell s the computation of non-linear problems are curyentl
subspace solver can be significantly improved by employiigder investigation and will be reported in due course.

an appropriate preconditioner, but this is not an easy task
in a matrix-free environment, as mentioned in section rIJ: 3. P. A Bastos, “Is it possile to solve a FEM static casehout
Table Il displays the CPU time the CG, the BiCGstab, a a.ssémblling and storing ama = b matrix system?,” International
the QMR method require to solve the microstrip problem to Compumag Society Newsletter, vol. 16, no. 1, pp. 4-10, 2009.

the same accuracy as before, but with the application oflZ J: P- A. Bastos and N. Sadowski, A method to solve FEM ssatiases
Jacobi preconditioner. The number of iterations requirgd b without assembling a matrix system: application to 3D edge aisticin

Proceedings of the 8th International Symposium on Electric and Magnetic
Fields, EMF 2009, Mondovi, Italy, May 2009, pp. 157-158.
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